-
A new imaging technology can distinguish cancerous tissue from healthy cells by detecting ultra-weak light signals. It relies on nanoparticles that bind to tumor markers, making cancerous areas easier to identify. The system is far more sensitive than existing tools and could speed up cancer screening. Scientists believe it may help detect tumors earlier and reduce delays in diagnosis.
-
A deadly hospital fungus that resists nearly every antifungal drug may have an unexpected weakness. Researchers discovered that Candida auris activates specific genes during infection to hunt for nutrients it needs to survive. This insight came from a new living-host model that allowed scientists to watch the fungus in action. The findings could eventually lead to new treatments or allow current drugs to be repurposed.
-
Some ants thrive by choosing numbers over strength. Instead of heavily protecting each worker, they invest fewer resources in individual armor and produce far more ants. Larger colonies then compensate with collective behaviors like group defense and coordinated foraging. The strategy has been linked to evolutionary success and greater species diversity.
-
New research suggests Alzheimer’s may start far earlier than previously thought, driven by a hidden toxic protein in the brain. Scientists found that an experimental drug, NU-9, blocks this early damage in mice and reduces inflammation linked to disease progression. The treatment was given before symptoms appeared, targeting the disease at its earliest stage. Researchers say this approach could reshape how Alzheimer’s is prevented and treated.
-
Black holes are among the most extreme objects in the universe, and now scientists can model them more accurately than ever before. By combining Einstein’s gravity with realistic behavior of light and matter, researchers have built simulations that closely match real astronomical observations. These models reveal how matter forms chaotic, glowing disks and launches powerful outflows as it falls into black holes. It’s a major step toward decoding how these cosmic engines actually work.